Série 3 des Travaux Dirigés

Variables aléatoires

1. Variables aléatoires et Espérance Mathématique

Q1.1. Calculer l'espérance mathématique μ , la variance σ^2 et l'écart-type σ de chacune des lois de probabilité suivantes :

	x_i	2	3	11			
i.	$f(x_i)$	$^{1}/_{3}$	$^{1}/_{2}$	$^{1}/_{6}$			
	x_i	-5	-4	1	2		
ii.	$f(x_i)$	$^{1}/_{4}$	1/8	$^{1}/_{2}$	1/8		
iii.	x_i	1	3	4	5		
111.	$f(x_i)$	0,4	0,1	0,1	0,3		

Q1.2. On jette un dé bien équilibré. Soit X la variable représentant le double du nombre obtenu, et Y une variable prenant les valeurs 1 ou 3 suivant que l'on obtient soit un nombre impair., soit un nombre pair. Calculer la distribution, l'espérance, la variance et l'écart-type de (i) X, (ii) Y, (iii) X + Y, (iv) XY.

Q1.3 On jette trois fois une pièce de monnaie <u>mal équilibrée</u>. On a $P(F) = \frac{3}{4}$ et $P(P) = \frac{1}{4}$. Soit X la variable aléatoire représentant le nombre de faces que l'on obtient. Calculer la distribution de probabilité, la moyenne, la variance et l'écart-type de X.

2. Loi de probabilité produit, variables aléatoires indépendantes

Q2.1. Supposons que X et Y aient les distributions jointes :

X	-3	2	4	Somme
1	0,1	0,2	0,2	0,5
3	0,3	0,1	0,1	0,5
	0,4	0,3	0,3	

i. Calculer les lois de probabilité de X et Y

ii. Calculer Cov(X, Y), c.à.d. la covariance de X et Y

iii. Calculer $\rho(X,Y)$, c.à.d. le coefficient de corrélation de X et Y

iv. Est-ce que X et Y sont des variables aléatoires indépendantes

Q2.2. Soient X et Y des variables aléatoires indépendantes ayant les lois de probabilité :

$\frac{x_i}{f(x_i)}$	1 0,6	2 0,4		Loi de Probabilité de <i>X</i>
y_i	5	10	15	Loi de Probabilité
$g(y_i)$	0,2	0,5	0,3	de Y

Calculer la loi de probabilité produit *h* de *X* et *Y*.

Q2.3. On lance trois fois une pièce de monnaie **parfaitement équilibrée**. X est une variable aléatoire prenant respectivement les valeurs 0 et 1 selon que le premier jet donne face ou pile. Y désigne le nombre de faces obtenu. Calculer (i) la loi de probabilité de X et Y, (ii) la loi de probabilité produit h de X et Y, (iii) Cov(X,Y).

3. Variables aléatoires continue

Q3.1. Soit *X* la v.a. continue ayant la distribution :

$$f(x) = \begin{cases} x + k & \text{si } 0 \le x \le 3 \\ 0 & \text{ailleurs} \end{cases}$$
 (i) Calculer k .
(ii) Calculer $P(1 \le X \le 2)$

Q3.2. Soit *X* la v.a. continue dont la distribution est constante sur un intervalle $I = \{a \le X \le b\}$ et vaut 0 ailleurs :

$$f(x) = \begin{cases} k \text{ si } a \le x \le b \\ 0 \quad ailleurs \end{cases}$$

Cette variable est uniformément distribuée sur I. (i) Calculer k (ii) Calculer la moyenne de X. (iii) Déterminer la fonction de répartition F de X.

 $\it Q3.3$. Soit $\it X$ une variable aléatoire continue ayant la loi de probabilité :

$$f(x) = \begin{cases} \frac{1}{8} & \text{si } 0 \le x \le 8\\ 0 & \text{ailleurs} \end{cases}$$
(i) Calculer: $P(2 \le x \le 5)$, $P(3 \le x \le 7)$ et $P(x \le 6)$.
(ii) Déterminer et représenter graphiquement la fonction de répartition F de X .